
N94- 32425

Neural Network Wavelet Technology, A Frontier of Automation
Harold Szu

Naval Surface Warfare Center Dahlgren Division, Code B44,

Silver Spring/White Oak MD 20903-5640

President, International Neural Network Society

(301) 394-3097; (301) 394-3923(Fax); HSzu@Ulysses.nswc.navy. mil

Abstract:

Neural networks are interdisciplinary studies about animal brains. These

have improved AI towards the 6th Gen Computers. Enormous amounts of

resources were poured into this R/D awaiting for breakthroughs. International

Neural Network Society held two Conferences attended by thousands each year,

pushing the ultimate & exciting frontier of computing & info-tech.----our bio-brains,

Wavelet Transforms (WT) replaced Fourier Transforms (FT) favorably in

every known Wideband Transient (WT) cases that began with the discovery of WT

in 1985--the French geological exploration for oils by means of seismic wave

imaging. The list of successful applications has the earth quake prediction, the Radar

ID, speech recognitions, stock market forecasts, FBI finger print image compressions,

telecommunication ISDN-data compression. More, the billion dollar medical-

industrial has applications that still await the perfection--the intelligent heart beat

pace-maker, the echoless hearing aids, in vivo constant level drug-dispensor, etc.

1. Introduction

A surging interest in neural nets began in 1980, when J. Hopfield wrote

articles in Proc. Nat. Acad. Sci. p.2554 (1992) & p.3088 (1994), although pioneers such

as Grossberg, Amari, Widrow, Kohonen, Fukushima, Anderson, Freeman, vonder

Malsburg, Rumelhart, Werbos, Carpenter, Cooper, have made significant

contributions earlier. His model is simple for engineering because of interacting

magnets (i.e. neuron points to the north for yes-vote, the south for no-vote) having

simple matrix interconnects. Neurons are of McCulloch-Pitts (M-P) threshold logic.

2. Mathematical Foundation of Artificial Neural Networks

M-P Model of the ith neuron (in alphabetic order:, u-input & v-output):

vi= c_(u i) = 1/(1+ exp(-ui)); Grossberg's: (d/dt)vi= c (v i- _ui)) (1)

where each voting vj is weighted by previous memory Wij as the net input ui:

ui= I:j Wij vj + O; Hopfield's: (d/dt)ui= b (u i- Xj Wij vj - 0 ); (2)

Wij= vivj; Hebb's:(d/dt)Wij= a (Wij-v i vj) (3)
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Figure 5. The GUI of real-time welding penetration monitoring system

Figure 6. The GTAW Welding Penetration Monitoring System
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All lefthand side equations are the fixed-point solutions of righthand side dynamics.

Such a dynamic, via the synaptic vector outer products: Wij=vivj, demonstrated the

Zip-Code Sorters, the Bank-Check Readers, and the OCR capabilities [1].

Generalizations in Chaotic-Fuzzy NN chips [21]:

Single neuron processes learnable threshold vector function 0 i.

0 = f(0); (d/dt)0 = e ( 0 - f(0) ) (4)

One component of 0 has the change detection capability, similar to C. Mead VLSI-

analog ANN book (Addison-Wesley 1989). When 0 has two first order components

giving one second-order equation for an oscillatory behavior similar to firing pulse

trains, as shown by Szu et al. Further, if 0 has a third component proportional to

the need of keeping up the rapid firing, i.e. to the slope of input-output firing rates:

Feigenbaum-Like Chaos Mapping:

0 = cc (dv/du) = 4X v ( 1- v) (5)

which gives, explicitly by differentiating Eq(1), the parameter 4_ giving Feigenbaum

cascades toward chaos. The model Eq(4) was shown [21] to be a piecewise negative

sigmoidal logic, vi= (_N(Ui) with no delay, which bifurcated for fuzzy uncertainty. !

believe that the "Rosetta Stone" of chaos, fuzzy logic, and neural networks has been

discovered for which the fuzzy membership function is the triangle envelop of all

bifurcation cascade solutions toward the chaos, that covers the full degree from

imprecision to precision. The consequence in the chaotic whether prediction that

dictates when the cherry in D.C. will be blooming from the imprecise spring season

(but a crisp answer yes at the tip of the triangle membership function), to the

bifurcation answer in the month of March or April, then further bifurcations into

weeks, the days, the hours, etc. Now that a single (_N neuron can produce such a

membership function, of which a hundred thousand of them can learn the

collective experience in the chaotic associative memory. So far, we have already
demonstrated the habituation and novelty detection effect form such a collection

for image processing [21].

3. Mathematics of Wavelet Transforms, and Adaptive WT

Wavelet Transform (WT) is a linear squared-integrable transform in the
inner product (Hilbert) space, just like FT. But WT must have a kernel of zero area

and vanish outside a finite support. More, WT must generate all localized basis
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vectors by the simple affine scale-shift transformation:

t -> t' = ( t - b ) / a (6)

where the dilation a=21 and the shift b=I, are I---_ integers, rather than by Fourier

global harmonics (27r I ft). Since WT has the constant fidelity Q = fo/Sf of which the

ratio between the central frequency fo and r.m.s, width of the frequency, WT is

analogous to the human inputs. Recently, adaptive WT [2] can determine its own

appropriate transform kernel by the input data. A fundamental question is the

completeness of the basis vectors. Thus, Adaptive WT is built by Artificial Neural
Networks of which each neuron is a daughter. The set of daughter wevelet is

_/ab(t) = _ ( t -b/a)/_/a, (7)

defined by the mother wavelet _(t) satisfying a finite power spectral density (for a

derivation of admissible mother, see [3]):

_clf I_P(1012 / Ifl = c_< co; (8)

where _F(f)=_dt exp(2_jft) _(t)

The integrand I _P(i01 2/I f Is oo at f = 0, only if _P(f=0) = 0 gives a zero area condition:

_F(f=0) =_dt _(t - b/a)=0. The integrand is identical by changing f-->f'=af. All

daughters have identical inner product to the mother: (_ab(t), _ab(t))=(_(t'),_ll(t')).

According to the best possible classification or the most efficient

representation criteria, the adaptive WT yields a composed mother from a set of

admissible mothers: _(n)(t), Eq(3). Will the super-mother h(t) be admissible Eq(8)?

Min. < I s(t) - Y_aY_b (s(t)

where h(t) =_n Wn _(n)(t)"

• h(t-b/a)) h(t-b/a) 1 2> (9)

Prove of Szu's Theorem of Adaptive Wavelet Transform with Admissible

Super-Mother Condition:

Since a square modulus is always real positive: 0 < I_P (m)- _p(n)12 '

then, by expanding the quadratic expression, the Schwartz inequality holds:

_g(m) _p,(n) + _p.(m) _(n) _< i_p(m) 12 + i_p(n) 12
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Use is made of Eq(4) in FT domain, we have the admissible super-mother condition:

fdf IH(f)12/Ifl = _m dm _n dn fdf _F(m)_P*(n)/Ifl

__ (1/2) XmX n WmWn{fdf I_p(m)(f)12/Ifl +fdf I_p(n)(f)12/Ifl } __ oo, (10)

which is bounded. Thus, the super-mother is likewise bounded, i.e. admissible.

Examples:

For the NASA mission of downward looking surveillance, such as the Earth

Observation System (EOS), and DoD Mission Planning Pricision Striking Initiative,

we requires a 2-D imagery sequence in time to be analyzed by 2-D wavelet adaptively.

In order to illustrate the AW T, the simplest possible case is a hybrid of the human

vision system response function called the Difference of Gaussian (DOG) model and
the complex Gabor-Morlet wavelet in 1-D

h(n)(t) = exp(- t2/an ) (t 2- b2n) exp(2_jCnt)" (11)

where an, bn, cn are real constants to be determined by ANN, that could be different

for different mothers.

Another interesting example is an envelope soliton for the nonlinear ocean
dynamics,

h(n)(t) sech2(t-b/a) exp(2_jc n t) (12)

which solves the Korteweg-DeVries equation derived from the Navier-Stokes

hydrodynamics for a surface wave. Because the soliton is the exact solution of the

nonlinear dynamics, this example indicates the potential that WT has---the freedom

"to pay the nonlinear price first, and then enjoy the linear superposition" later. On

the contrary, FT must be deferred the nonlinearity nature by first apply the linear FT

to the nonlinear problem. Then, the challenge of the truncation of the NL mode-

mode coupling equations remains, which may be solved only in the limit of weak
nonlinearity.
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ABSTRACT

NCCOSC RDT&E Division (NRaD) is conducting research into ways of improving decision support

systems (DSS) that are used in tactical Navy decision making situations. The research has focused on the
incorporation of findings about naturalistic decision-making processes into the design of the DSS. As part of that
research, two computer tools have been developed that model the two primary naturalistic decision-making strategies
used by Navy experts in tactical settings. Current work is exploring how best to incorporate the information
produced by those tools into an existing simulation of current Navy decision support systems. This work has
implications for any applications involving the need to make decisions under time pressure, based on incomplete or
ambiguous data.

BACKGROUND

Our research at NRaD is part of the TADMUS (TActical Decision Making Under Stress) project, funded by
the Office of Naval Research. That project is generally involved with looking into new ways to enhance the decision

making of Navy personnel in tactical command and control situations.
The particular focus of TADMUS is on the area of anti-air warfare (AAW), and involves situations in which

shipboard commanders must make decisions about the nature and intent of aircraft that are in the vicinity of the ship.
Because these situations can involve jet aircraft armed with missiles, decisions must sometimes be made in seconds

even though the available information can be incomplete or ambiguous. The decisions are made by six person
teams, where the ultimate responsibility for making decisions lies with the ship's commander (CO) who is closely

aided by a tactical action officer (TAO).
The TADMUS research has taken two primary directions. Part of the work is involved with looking at new

training approaches for the decision teams. The other primary effort involves the investigation of new approaches in
the area of decision support systems. We are involved with the DSS area at NRaD.

A large part of the early DSS related work under TADMUS involved the investigation of the decision-
making strategies used by experienced Navy personnel in actual tactical situations. That research took the approach
of looking into naturalistic decision making. Naturalistic decision making emphasizes gathering data about how
experienced decision makers make their decisions in real world settings. This approach is to be distinguished from
the more artificial approaches often used in decision research, where inexperienced subjects are tested in doing
unfamiliar tasks in artificial settings. One of the general ideas emerging from studies of naturalistic decision making

is that it appears that experienced human decision makers are much better at making good decisions than is often
suggested by more traditional research approaches.

The early TADMUS research identified two primary naturalistic decision-making strategies being used by

experienced Navy personnel [5]. In most situations, those decision makers use a strategy referred to as recognition-
primed decision making (RPD). This strategy relies on the use of prior experience to suggest how prototypical
patterns of data may be sufficiently close to currently observed data to guide decisions about the current data [6].
When prior experience proves insufficient to guide current decisions, a second strategy comes into play using
explanation-based decision making, or story generation. This strategy involves the construction of a few alternative
explanations that account for the current data, followed by an evaluation of which explanation is the most plausible
[8]. In both the RPD and story generation situations, selection of a course of action is expected to be automatically

generated as a consequence of the situation assessment.
Two tools have been developed under TADMUS to model those strategies. An RPD template based tool

takes the approach of matching current data items against a set of stored templates [7]. Those templates represent a
set of typical scenarios that can be expected to occur in given tactical settings. The tool estimates the degree of fit
between actual current data and the stored templates, and brings templates to the user's attention when there is a
sufficiently good fit. A second tool called SABER (Situation Assessment By Explanation based Reasoning)
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